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We introduce a dynamic fuse model for the damage done to a current-carrying polycrystalline metal film by
electromigration. For all initial densities of defects p, the mean failure time () is, to an excellent approxi-
mation, proportional to the average length of the shortest path across the film in a certain metric. (T) tends to
zero as (p.— p)*? as the percolation threshold p=p, is approached.

PACS number(s):

There is currently much interest in random media that are
changed irreversibly by an applied field. These so-called
“breakdown problems” play an important role in nonequilib-
rium statistical physics and materials science. “Burnout” of
random fuse networks [1-3], dielectric breakdown [2,4—-7],
the onset of superconductivity in granular superconductors
[8], and the fracture of brittle materials [9] have all been
studied using breakdown models.

The breakdown models mentioned so far are quasistatic,
since failure occurs instantaneously when the applied voltage
(or stress) is sufficiently large. A truly kinetic breakdown
model was introduced by Sornette and Vanneste [10,11] to
describe the failure of fuse networks that burn out due to
Joule heating. Their Monte Carlo simulations revealed a rich
phenomenology of fracture patterns and the existence of a
novel dynamical memory effect [10,11].

When an electrical current passes through a thin metal
film, collisions between the conduction electrons and the
metal ions lead to drift of the ions. This process is known as
electromigration [12]. If there is a divergence in the flux of
ions at a point, a void or hillock forms [13]. Voids grow and
overlap until conduction ceases and electrical failure is com-
plete. Electromigration can lead to the electrical failure of
interconnects in very large scale integrated (VLSI) circuits in
relatively short times, reducing the circuit lifetime to an un-
acceptable level [14]. It is therefore of great technological
importance to understand and control electromigration fail-
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ure of thin films. Electromigration-induced damage in a
polycrystalline metal film is an irreversible kinetic process,
since the damage cannot be repaired simply by reversing the
current.

In this Rapid Communication, we introduce a truly kinetic
breakdown model for the damage done to a current-carrying
polycrystalline metal thin film by electromigration. In our
coarse-grained description, the film in its initial state is rep-
resented by a random resistor network in which a fraction p
of the bonds are insulators and the remainder are conductors.
As current flows through the network, conducting bonds are
damaged by electromigration and some eventually fail, be-
coming insulators. Conduction through the network as a
whole ceases at the failure time T;. For all p, the mean
failure time () is, to an excellent approximation, propor-
tional to the average length of the shortest path across the
film in a certain metric. This conclusion is supported by our
simulations and by analytical work in which we construct
exact upper and lower bounds on (7). We also show that
(T;) tends to zero as (p.—p)*? as the percolation threshold
P=p. is approached.

We adopt a coarse-grained description of a polycrystalline
metal thin film in which the film is represented by an NXN
square grid of sites with a lattice spacing a large compared to
the mean crystallite size d. Each nearest-neighbor pair of
sites is joined by a conducting bond with a quenched, ran-
dom conductance. Since a> d, we may neglect correlations
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FIG. 1. The initial configuration of a 7X 7 network. Conducting
bonds are shown in full lines, and insulating bonds are shown with
bold full lines. The top and bottom rows (the busbars) are equipo-
tential surfaces. The path I' on the dual lattice (dashed lines) has
“length” n(I')=12. Periodic boundary conditions apply in the x
direction, and so the columns to the far left and right coincide.

between the conductances of neighboring bonds. For sim-
plicity, we assume that each bond is either an insulator (with
probability p) or a conducting wire with resistance R (with
probability 1—p). All conducting bonds are taken to be
identical. Conducting busbars are placed along the top and
bottom of the grid and a constant external current /[ is
passed through the network. To minimize finite size effects,
we apply periodic boundary conditions in the horizontal di-
rection (Fig. 1).

As current passes through a particular wire in the grid,
electromigration occurs and electrical failure eventually
takes place. The current / passing through this wire may vary
with time since failures elsewhere in the system lead to cur-
rent redistribution. It is natural to assume that the rate dam-
age is done to the wire at time ¢ is proportional to |I(¢)|. We
further assume that the wire fails irreversibly and becomes
an insulator once the damage has reached a given threshold.
The lifetime of the wire ¢, is then given by
f:)f |I(¢)|dt=Q,, where Qy is a constant with units of charge
[15]. The absolute value of the current appears in our failure
criterion because the damage rate is independent of the cur-
rent direction.

Our model is a special case of the more general model of
Sornette and Vanneste [10,11]. However, Sornette and Van-
neste did not actually study this case, nor did they apply it to
electromigration. As we will now show, it is possible to make
considerable progress analytically on our model.

Suppose that a single vertical bond is insulating at time
t=0, and that the remaining bonds are all conducting ini-
tially. Our simulations show that the insulating bond nucle-
ates a horizontal “crack” of adjacent broken vertical bonds,
and that this crack grows laterally until its tips meet and
failure is complete [16]. As an attempt to construct a theory
of the failure process when multiple cracks are present, we
developed a “Lifshitz-type” theory for our model in which
crack-crack interactions are neglected [17]. We were encour-
aged to do so because a Lifshitz-type theory is quite success-
ful in predicting the failure voltage of a random fuse network
[2,3]. Our Lifshitz-type theory is in good agreement with the
results of our simulations when p<<N "', but for larger val-
ues of p, an entirely different approach is needed. This is
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because the interaction and fusion of cracks can be ignored
only if the defects are initially very dilute.

We now develop a theory that applies for all p. Let I' be
a path on the dual lattice (Fig. 1). [' may be any closed
self-avoiding path that wraps around the lattice once before
closing. For convenience, we will refer to a path of this kind
as simply “‘a path.” We now assign a “length” n(I") to I':
We let n(I') be the total number of conducting bonds that
cross I' at time r=0. The path with the smallest value of n
(the “shortest path™) will be denoted I',. We will demon-
strate that for any initial configuration C.

Trsn(l' . (1

where ty=Q/l,. Most significantly, we argue that the mean
failure time

(To=(nIo)1,. (2

(The angular brackets denote an average over initial configu-
rations C.)

Simulations of our model are extremely time-consuming,
since Kirchhoff’s equations for the network must be repeat-
edly solved. However, if we are content with knowing the
approximate failure time, we need only compute the shortest
path length, and this can be done easily and with great speed
[18]. Moreover, much is known about the mean length of the
shortest path in certain limits, and this knowledge can be
directly applied to our model. Equations (1) and (2) relate the
time that a complex dynamical process comes to an end to a
simple geometrical quantity, the length of the shortest path
through the initial configuration.

To establish the inequality (1), consider an arbitrary path
I' at time . We walk along the path from left to right, and
each time we arrive at a new bond, we assign a sign to the
current in the bond. If the current passing through the bond
goes from left to right across the path, it is a positive current:
otherwise, it is a negative current. We index the conducting
bonds that cut I' at time ¢=0 by the integers
k=12, ..., n(I'). Because charge is conserved, for any
time t<<T; we have

nh

> il =1,. (3)
k=1

Here i;(t) is the current passing through the kth bond at time
t, and has the appropriate sign. Taking the absolute value of
Eq. (3) and setting ['=1",, we obtain

ntl )

2 Iik(f”?[n' (4)
k=1

Let t*=n(I,)t,. With this notation, Eq. (1) becomes
T,<t*. If the network fails before time ¢*, then T,<r*.
Now suppose that the network does not fail before time ¢*,
so that T,=t*. Consider the situation at time ¢*. Integrating
Eq. (4) from t=0 to t*, we obtain

n(l)

> J"'likmldzzQ”n(l}.). (5)
0

k=1
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Since a conducting bond fails once a charge Q, has flowed
through it, [ 6*|ik(t)|dtsQ0 for all k. Equation (5) shows

that the only way that this can be so is for [ |i,()|dt to be
equal to Q for all k. This means that all the bonds that cross
T'; are insulating at time ¢*, and hence T;=¢*. We conclude
that T,<t*=n(T;)ty, as claimed.

To obtain a lower bound on T, note that once the net-
work has failed, there exists a path I, that is crossed only by
insulating bonds [19]. We call such a path a “critical path.”
T is the time that it takes for all conducting bonds that cut
I'. to break. n(I".) conducting bonds cut I, at time t=0. If
all charges that crossed I' . never returned to the region above
it, we would simply have I,T;=Qon(I".). However, in some
cases negative ‘“‘backtracking” currents cross I'., and we
must account for this possibility. Let O~ (T",) be the total
amount of charge that returns to the region above I, before
time T';. Explicitly,

n(l,)

T
0 ro=t3 [ Haol-io
k=1 70

Each time that a charge returns to the region above I',, it
damages conducting bonds twice—once when it backtracks,
and again when it returns to the region beneath I',. Thus
1) T=Qen(I'.)—2Q (T',). Since n(I';j)<n(T'.), we have

n(rs)tO—ZQ_(Fc)/I()sTfa (6)

which is the desired lower bound.

If backtracking across the critical path is negligible on
average, (Q ~(T',)) will be small. Equations (1) and (6) then
yield Eq. (2), which relates (T) to the average length of the
shortest path across the initial configuration of the network.
Accordingly, we call the approximate theory that is obtained
by neglecting backtracking across I', the “shortest path
theory.”

Is backtracking across I', ever important? Consider the
case in which p is small. At early times, backtracking is
absent if the broken bonds are remote from one another.
Backtracking can occur only if there are several nearby bro-
ken bonds, and this occurs with negligible probability. At late
times, on the other hand, the current flow is constricted to
flow through the few narrow conducting apertures that re-
main in I .. When the current flow is constricted in this way,
it is most unlikely to backtrack. To draw an analogy: If a dam
has several small gaps in it, water is unlikely to flow up-
stream through a hole. We therefore expect that, on average,
negative currents across the critical path will be negligibly
small for p<p..

Now consider the situation at the percolation threshold
P=p.. In most initial configurations C, there is a conduct-
ing bond whose removal disconnects the two busbars, a so-
called ““singly connected bond” (SCB) [20]. Up until time
Ty, the SCB carries all of the current. The SCB is the only
bond to break, and once it has broken, network failure is
complete. In configurations of this kind, the critical path
crosses only one conductor (the SCB) and there is never any
backtracking. If there is no SCB in C, it is practically certain
that the simultaneous removal of two conducting bonds is
sufficient to interrupt the flow of current [20]. These bonds
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FIG. 2. The dimensionless failure time (joa/Qo)(T;) (crosses
with error bars) and (n(T';))/N (open circles) are plotted vs p for a
64X 64 network.

are called “doubly connected bonds.” In all but rather un-
usual initial configurations, the critical path crosses only two
conductors, the doubly connected bonds. If this is the case,
there is never any backtracking across the critical path. We
conclude that at the percolation threshold, (Q(T.)) is
small. It is also possible to argue that backtracking is negli-
gible for p close to but less than p. [17]. In sum, we expect
Eq. (2) to be a good approximation if p is small or is close to
P

To test the shortest path theory, we performed simulations
of our model. Instead of solving Kirchhoff’s equations di-
rectly, the Green’s function formulation for the resistor net-
work was solved using the conjugate gradient method [21].
T; was determined for grids with N=64 for a range of p
values between 0 and p.= 3. For each value of p, an average
over 50 configurations was made. The current density
Jjo=Iy /(Na) and the charge Q had the same values in all of
the simulations.

We also computed the shortest path lengths for the same
set of initial configurations that were used in our simulations
of the electromigration process. These lengths were averaged
to give an estimate of (n(I'y)). For a given initial configu-
ration, n(I';) was determined using a straightforward modi-
fication of the “burning” algorithm [18].

The computed values of (n(T';))/N and (joa/Qo){Ty) are
very close to one another for all values of p (Fig. 2). Our
results therefore provide strong support to our claim that Eq.
(2) is a good approximation for small p and for p close to
p.- Indeed, the shortest path theory works very well
throughout the entire range of p values.

Much is known about the behavior of (n(I',)) [22]. It has
been proven that as the size of the network L=Na tends to
infinity, (n(I';))~u(p)L. The first passage time constant
w(p) is positive for p<p_ and is zero for p>p.. As the
percolation threshold p,. is approached from below, wu(p)
tends to zero as u(p)~(p.—p)”. The exponent v is exactly
% in two dimensions [23]. At the percolation threshold,
(n(T))~k InL as L—o, where k is a constant.

Let us now consider the predictions of the shortest path
theory. For a given p<p,, the mean failure time grows as
(Tg)~p(p)toL as L—o. The failure time tends to the con-
stant w(p)Qy /jo if the current density j, is held fixed as L
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grows large. If p is not greater than p,. but is close to it, we
may use the scaling hypothesis to obtain

tolnl  for a<kL<k¢;
(pc—p)* 1ol for L>¢.

Naturally, (Ty) is zero for p>p,.

In our simulations, we observed that the critical path I,
tends to be close to the shortest path I';, and that large por-
tions of these two paths often coincide. In most instances,
n(T',) is equal to n(I’,) or is only slightly larger than it. This
can be shown to be the case using the shortest path theory.
Recall that T;=n(T".)ty—2Q " (I')/I,. Combining this with
Eq. (1), we obtain n(I'))<n(T’,)+2Q0 (I',)/Qy. On the
other hand, n(I’,)<n(T".). Since (O (T'.)/Q,) is negli-
gible, we have (n(T,.))=(n(T,)).

Ideas reminiscent of our shortest path theory have been
introduced in the theory of quasistatic dielectric breakdown
[6,7,24]. In their Monte Carlo simulations of a continuum
model for dielectric breakdown in metal-loaded dielectrics,
Gyure and Beale assigned each path P that spanned the sys-
tem from busbar to busbar a “gap” x(P) equal to the length

(Tp)
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of path that lies in the dielectric [7]. Gyure and Beale noted
that the path with the smallest gap tends to be close to the
actual path that led to breakdown. Their simulations also
suggest that the breakdown field is approximately propor-
tional to the minimum gap. At present, there is no analytical
work to support these observations.

In this Rapid Communication, we have concentrated on
the failure of square thin films. However, the shortest path
theory can also be used to account for experimental results
on the lifetime of long, narrow wires, which is an issue of
great importance in microelectronics [17]. In the future, we
intend to simulate networks with more general types of dis-
order than percolative disorder. The shortest path theory is
readily generalized to more general types of disorder in the
bond resistances, and to problems in which Q) is a quenched
random variable as well [17]. We are also investigating the
possibility that variants of the shortest path theory can be
applied to other models of breakdown in random media.

We would like to thank P. D. Beale, F. M. d’Heurle, P. M.
Duxbury, C. S. Galovich, M. P. Gelfand, and P. L. Leath for
helpful discussions. This work was supported by NSF Grant
No. DMR-9100257.

[1] L. de Arcangelis, S. Redner, and H. J. Herrmann, J. Phys.
(Paris) Lett. 46, 585 (1985).

[2] P. M. Duxbury, P. D. Beale, and P. L. Leath, Phys. Rev. Lett.
57, 1052 (1986).

[3] P. M. Duxbury, P. L. Leath, and P. D. Beale, Phys. Rev. B 36,
367 (1987).

[4] H. Takayasu, Phys. Rev. Lett. 54, 1099 (1985).

[5] P. D. Beale and P. M. Duxbury, Phys. Rev. B 37, 2785 (1988).

[6] D. R. Bowman and D. Stroud, Phys. Rev. B 40, 4641 (1989).

[7] M. F. Gyure and P. D. Beale, Phys. Rev. B 40, 9533 (1989);
46, 3736 (1992).

[8] R. M. Bradley, D. Kung, S. Doniach, and P. N. Strenski, J.
Phys. A 20, L911 (1987).

[9] P. Ray and B. K. Chakrabarti, Solid State Commun. 53, 477
(1985); J. Phys. C 18, L185 (1985); B. K. Chakrabarti, D.
Chowdhury, and D. Stauffer, Z. Phys. B 62, 344 (1986); M.
Sahimi and J. D. Goddard, Phys. Rev. B 33, 7848 (1986); P. D.
Beale and D. J. Srolovitz, ibid. 37, 5500 (1988).

[10] D. Sornette and C. Vanneste, Phys. Rev. Lett. 68, 612 (1992).

[11] C. Vanneste and D. Sornette, J. Phys. (France) I 2, 1621
(1992).

[12] For example, see J. N. Pratt and R. G. R. Sellors, Electrotrans-
port in Metals and Alloys (Trans Tech, Riehen, 1973).

[13] F. M. d’Heurle and P. S. Ho, in Thin Films—Interdiffusion and

Reactions, edited by J. M. Poate, K. N. Tu, and J. W. Mayer
(Wiley, New York, 1978).

[14] P. B. Ghate, Solid State Technol. 26 (3), 113 (1983).

[15] We plan to discuss this failure criterion at greater length else-
where.

[16] R. M. Bradley and K. Wu, J. Phys. A 26, 327 (1994).

[17] K. Wu and R. M. Bradley (unpublished).

[18] H. J. Herrmann, D. C. Hong, and H. E. Stanley, J. Phys. A 17,
1261 (1984).

[19] Intuitively, the electrical current is analogous to water flowing
in a river. Water stops flowing only when there is a dam with-
out gaps that spans the river. In the same way, in our model
electrical current stops flowing only when a critical path has
been formed. We plan to give a formal demonstration of the
existence of a critical path at time t=T elsewhere [17].

[20] Y. Kantor, J. Phys. A 19, L497 (1986).

[21] K. Wu and R. M. Bradley, Phys. Rev. E 49, 1712 (1994).

[22] J. T. Chayes, L. Chayes, and R. Durrett, J. Stat. Phys. 45, 933
(1986).

[23] D. Stauffer and A. Aharony, Introduction to Percolation
Theory (Taylor and Francis, London, 1991).

[24] R. B. Stinchcombe, P. M. Duxbury, and P. Shukla, J. Phys. A
19, 3903 (1986).



